CM 515: Data Visualization Module I

Dan Sloan

Department of Biology dan.sloan@colostate.edu

Data Visualization Resources

Datacamp

- Introduction to Data Visualization with ggplot2
- Intermediate Data Visualization with ggplot2
- Visualization Best Practices in R

Claus Wilke Data Visualization in R Course (U Texas)

R for Data Science

Claus O. Wilke

Scientific Communication and Professionalism

- Clear, accurate, and complete representation of your data
- Efficient, reproducible, and automated methods
- Clean, professional, and aesthetically pleasing appearance

The Right Tools for the Job

A few examples

- R and ggplot
- Circos
- Processing
- Adobe Illustrator
- BioRender

Making Figures with Code

ggplot(cnld) + geom_point(aes(x=CumPos, y=r2, size=0.75, colour=as.factor(ChromPrint), alpha =
1/8)) + scale_size_identity() + theme_bw(base_size=15) +
scale_color_manual(values=c(rep(c('black', 'dark gray'),11), 'black', 'red')) +
scale_x_continuous(expand = c(0.015, 0.015),labels=c(as.character(1:chrNum), "X"),
breaks=bpMidVec) + theme(plot.margin = unit(c(0.03,0.03,0.03,0.03), "in"),
legend.position='none', axis.text.x = element_text(size=6), axis.text.y = element_text(size=7),
axis.title.x = element_text(size=8), axis.title.y = element_text(size=8)) + xlab('Chromosome
Position') + ylab(expression(paste("Mitonuclear LD (",r^2, ")")))

The Grammar of Graphics

- aes: Aesthetic mapping of data to plot elements
 - position (X or Y coordinates), shapes, sizes, color, line weight/type, transparency, etc.
- geoms: Layers visually representing your mapped data
 - points, lines, bars, density curves, etc.
- facets: Dividing into subplots
 - partitions dataset based on one or more variables

- themes: Non-data plot elements
 - axis labels, grid lines, titles, etc.

Image: Thomas de Beus

A Few Principles of Data Visualization

- What are you trying to communicate??
- The demise of the bar plot
- Choosing a scale: log vs. linear
- Use and choice of color palettes

Patterns

Perspective

Principles of Effective Data Visualization

https://www.sciencedirect.com/science/article/pii/S2666389920301896

Stephen R. Midway1,*

¹Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA

*Correspondence: smidway@lsu.edu https://doi.org/10.1016/j.patter.2020.100141

The Demise of the Bar Plot

PLOS BIOLOGY

Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm

Tracey L. Weissgerber , Natasa M. Milic, Stacey J. Winham, Vesna D. Garovic

Published: April 22, 2015 • https://doi.org/10.1371/journal.pbio.1002128

When Possible... Show All the Data!

Use point size, jitter, and/or transparency to mitigate the effects of overlapping points.

Better Ways of Comparing and Summarizing Distributions

Violin Plots: geom_violin()

Box Plots: geom_boxplot()

Examples from Claus Wilke: https://wilkelab.org/SDS375/slides/visualizing-distributions-2.html#1

Linear vs. Log Scales

- Use linear scales to emphasize absolute differences.
- Use log scales to emphasize proportional differences.

Accessibility

Color is a powerful tool for visualizations, but it will not be perceived in the same way by everyone in your audience. Tips for making your visualizations accessible to color bind individuals....

Use <u>palettes consisting of colors that are more distinguishable</u> for individuals with common forms of color blindness.

- Use color and shape of points redundantly to distinguish among groups in plot.
- Make use of figure labeling and legend descriptions to make the plot accessible even if colors are difficult to distinguish.

Choosing Colors

Go Easy on Our Eyes

Generic named colors in R tend to have extremely high saturation.

Thinking of Colors in Terms of Hue, Lightness and Saturation

Color to Emphasize, Not to Overwhelm

1950-1955 1955-1960 1960-1965 1965-1970 1970-1975 1975-1980 1980-1985 1985-1990 1990-1995 1995-2000 2000-2005 2005-2010 Each line represents the evolution of the 8.5average number of children per woman in a country Fertility rate (children per woman) BRAZIL World average Replacement level: average of 2.1 children per woman

Exercise and Assignment

https://dbsloan.github.io/CM515/SP24/ggplot/

Tree-Like Data Structures in Biology

- The tree of life and species relationships
- Gene family evolution
- Hierarchical clustering of gene expression patterns, ecological/microbiome communities, etc.

Newick Tree Format

 Standard parentheses/comma-based format for summarizing tree branching patterns

 Numerical values and annotations can be added to record features such as branch lengths, statistical (e.g., bootstrap) support, node/branch labels, and other features.

Linking Trees and Data Plots

Mitochondrial Targeting

Plastid Targeting

Exercise and Assignment

https://dbsloan.github.io/CM515/SP24/ggtree/